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The method of m om en t um  electron density for interatomic interactions has 
been applied to the two lowest or states of the H~- system. For attractive (lso-g) 
and repulsive (2peru) interactions, the behaviour of momen tum density and its 
effect on the stabilization energy of the system are examined quantitatively. 
The concept of contraction and expansion of the momen tum density is shown 
to form an important  guiding principle in this approach.  The origin of covalent 
bonding is discussed based on the energy partitioning proposed previously. 
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1. Introduction 

In order  to obtain new insight in the nuclear rearrangement  problem, recently 
we have developed a m om en t um  electron density approach which permits to 
clarify the origin of nuclear displacements such as molecular geometries and 
chemical reactions in terms of a concept in momen tum space instead of the 
traditional one in coordinate space [1]. Applying the virial theorem to a uniform 
scaling process [2, 3], we have derived three sets of basic equations for the energy 
of a system and its gradient using the m om en tum electron density p(p) as a basic 
physical quantity [1]. Based on the first set of equations, the general behaviour 
of the momen tum  density distribution and its effect on the stabilization energy 
and the interatomic force have been discussed during the course of attractive and 
repulsive interactions starting f rom the separated atoms. It has been suggested 
that the contraction and expansion of O (P) is an important  concept which governs 
propert ies of interactions in m om en t um  space. The results have been used to 
study the role of kinetic energy in chemical bonding. Possible energy partitioning 

0040-5744/81/0059/0423/$02.60 



424 T. Koga and M. Morita 

in this approach has also been mentioned, which may be useful in analyzing the 
interaction processes. 

The present study is the first quantitative application of the proposed method. 
For the simple but actual system of H~, the predicted reorganization of the 
momentum density is indeed found to occur in the interaction processes. Stabiliz- 
ation and destabilization (or attraction and repulsion) of the system are also 
explained from the momentum-space viewpoint. Partitionings of the stabilization 
energy into atom-bond components and into parallel-perpendicular components 
are carried out, and their relative importance is discussed. In the next section, the 
basic equations and the fundamental concept in this approach are briefly summar- 
ized. The radial momentum density [(p) is newly introduced which permits not 
only to reduce the required density information from the three-dimensional p (p) 
to the one-dimensional I(p), but also to connect the present method with the 
experimental Compton profile J(q). Computational details for the present system 
are given in Sect. 3 and the results are discussed in Sect. 4 for the attractive lstrg 
and repulsive 2po-u states. 

2. Basic Equations and Fundamental Concept 

In the present approach of momentum density, the kinetic energy AT(R) 
[~T(R)-T(oo)] ,  stabilization energy AE[--E(R)-E(oo)], and force 
F[=-dE(R)/dR] of a diatomic system with internuclear distance R are given by 
[1] 

AT(R) = I (P2/2)Ap(P; R) dp, (la) 

AE(R) = I (p2/2)AO(P; R) dp, (lb) 

F(R) = ( l /R)  I (P2/2)Aft(P; R) dp, (lc) 

where p stands for momentum vector of an electron and p = ]Pl. The difference 
in momentum density is taken to be 

Ap(p; R) = O(P; R ) -p (p ;  oo), (2a) 

and the modified density differences At5 and Aft are defined as 

P 
0 o  

R) ~ ( l /R)  JR Ap(p; R') dR', (2b) At~(p; 

Aft(p; R)---A~(p; R ) + Ap(p; R ). (2c) 

Eq. (1) is our basic equation which rigorously relates the energy and force with 
the momentum density, and from which the guiding principle of contraction and 
expansion is deduced for the density behaviour. The term contraction implies a 
reorganization of momentum density which results in a density increase at lower 
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momentum with a simultaneous decrease at higher momentum, while the 
expansion implies the opposite reorganization. The present equations have the 
merit that there is no need to consider nuclear repulsions separately. This point 
is different from the electrostatic Hellmann-Feynman theorem in the coordinate 
space. 

Some of the guiding principles deduced from Eq. (1) are as follows [1]: 
(1) For A T < 0 ,  Ap must contract, while for AT>0 ,  Ap must expand. The 
contraction of Ap (and then negative AT) is important for the initiation and 
acceleration of chemical reactions (bond formations), whereas the expansion (and 
then positive AT) is important for the termination of reactions. 
(2) For AE < 0 (stabilization), A/5 must contract, while for AE > 0 (destabiliz- 
ation), Aft must expand. At stable equilibrium, the contraction should be 
maximum. 
(3) For F < 0 (attraction), At5 must contract, while for F > 0 (repulsion), At5 must 
expand. The critical point of the contraction and expansion of A/5 corresponds to 
the point of F = 0, i.e. equilibrium. 
(4) For large R, behaviours of AO, AtS, and A~ are parallel, while at R = Re 
(equilibrium distance) Ap and A j5 show opposite reorganizations. 

Since the kinetic operator (p2/2) is angular-independent, it is possible to 
reduce the required density information from the three-dimensional p(p) to 
the one-dimensional I(p) without loss of generality and rigorousness of the 
approach. Using the radial momentum electron density I (p;R)  
[-~ p (p;R)p2 sin Op dOp dfbp], w e  can rewrite Eq. (1) as 

AT(R) = f (p2/2)AI(p; R) dp, (3a) 
d 

AE(R) = I (p2/2)Af(P; R) dp, (3b) 

F(R) = ( l /R )  f (p2/2)AI(p; R) dp, 

where 

(3c) 

r 
AI(p; R)--= J Ap(p; R)p 2 sin 0 v dOp df)p = I(p; R ) - I ( p ;  00), (4a) 

oO af(p;R)=f Afi(p;R)p2sinOvdOvdqSp=(1/R) f R AI(p;R')dR' ,  (4b) 

R) =- f Aft(p; R)p 2 sin 0 v dO v d~b v = Af(p; R) + AI(p; R). (4c) A/(p; 

I(p) has the merit that it is directly connected with the experimental Compton 
~ 3  

profile J(q) through the relations J(q)=(1/2)~lqlp-lI(p)dp and I ( p ) =  
2p[dJ(q)/dq]q= v [4]. We therefore proceed with our study using the simple and 
convenient density function I(p) along with Eq. (3). 
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As noted before [1], several partitionings of the stabilization energy are possible 
from Eq. (3) or (1). Two partitionings are examined here which seem useful for 
the analyses of interactions. One is a tom-bond partitioning based on the 
decomposition of momentum density into the one-center  atomic part and the 
two-center bond (or interatomic) part, I(p)=/atom(P) +/bond(P). 

AE(R)  = AEatom(R) + AEbond(g), (5a) 

) ----- f (p2/2)Alatom(P ; R) dp, (5b) "AEatom(g 
3 

AEbond(R) = f (p2/2)AIbond(p; R)  dp. (5c) 

The other is directional partitioning which results from the decomposition of the 
kinetic operator  into parallel and perpendicular parts, (p2/2) = 
(pl~/2) + (p2/2)  + (p2,/2). That  is 

AE(R) = AEII(R) + 2AE• (6a) 

AEII(R) = f (p~/2)A~l(pll; R) dpl I, (6b) 

AE. ( R )  = J (p~/2)A~(p• R) dp• (6c) 

where A~l(ptL; R ) - - ~ A f i ( p ;  R) dp. dp• etc. The kinetic energy AT and the 
interatomic force F can be parti t ioned similarly. 

The basic equations summarized above hold for both the exact and approximate 
momentum densities insofar as their parent  wave functions satisfy the virial 
theorem. Validity of the virial theorem is a necessary condition of this method. 

3. Computational Details 

H2 system is known m coordinate space Although the exact wave function for the + ' " 
[5], its Dirac-Fourier  transform into momentum space is difficult [6]. Approxi- 
mate but very accurate wave functions of Guillemin and Zener  [7] and of James 
[8] are given in the form of infinite series in momentum space [9]. Therefore,  we 
here adopted the Finkelstein-Horowitz wave function [10], which was shown to 
give the correct behaviour of the total, kinetic, and potential energy curves over 
the range of R values of interest [11, 12]. 

The Finkelstein-Horowitz wave function is given by [10] 

�9 (r) = (2 + 2S)-I/2{lSA(r) 4- lsB (r)}, (7a) 

lSg(r) = ((3/~)1/2 exp (--(Ir--RAI), (7b) 

where S is the overlap integral and RA the position of nucleus A (R = IRA --RB I). 
In Eq. (7a) and hereafter,  addition and subtraction represent the lso-~ and 2po-u 
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states, respectively. The exponent ( = ( ( R )  is optimized at every R and this 
guarantees the validity of the virial theorem [13] and hence the basic equations 
of the present approach. The Dirac-Fourier transform of Eq. (7) gives the 
corresponding momentum wave function [14] 

~ ( p )  = (2 --b- 2S)-I/2{1SA(p) --1- 1S B (p )} ,  ( 8 a )  

lSA(p) = exp (--ip . RA)IS(p), (8b) 

ls (p) = 23/2 (s /2~ -1(p2 + (2)-2. (8C) 

The nuclear position (more precisely, the center of AO) enters as a phase factor 
in the momentum representation. The momentum electron density is then 
obtained by p(p) = q*(p)*XF(p). Typical profiles of p(p) are shown in Fig. 1 using 
contour and perspective plots. We here note that the ground-state momentum 
density of this system, p(p) = [ 2 3 7 r - 2 ( 5 ( 1  + s ) - l ] ( p 2 + ( 2 ) - 4 ( 1 + c o s  p=R), is 

- ( l s )  Pz 
1 p 

-1 

_ O'g) R=2 ~ 
1 D x 

H_.2+(2P~u ) R = 2 Pz 

Fig. 1. Typical  profi les of momentum density distr ibut ion. Contour  values are 0. ] ,  0.2, 0.3, 0.4, 0.5, 
0.6, and 0.7 a.u. from the outermost  line. Perspective plots are drawn in the same scale from the same 
visual point. All values in atomic units 
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Fig. 2. lscrg state. Kinetic and stabilization energies obtained from the momentum density. Their 
decompositions into the atm-bond and the parallel-perpendicular components are also shown 

similar in form to that of a particle in a one-dimensional box with length R, 
p(Pz) = 2r _ r + cos pzR). This similarity may partly support 
the box model of diatomic momecules [15-17]. 

The reorganization of the momentum density from the isolated atoms is 

Ap (p) = Apatom(P) + Apbo~d(p) , (9a) 

Apatom(P) = (2B~.-z){[(5(1 + S)-l](pZ + 52)-4_ (pZ + 1 ) - 4 } ,  (9b) 

Apbond(p) = +[23~'-Z(5(1 + S ) - 1 ] ( p 2 + ( 2 )  -4 cos (pR cos 0p), (9c) 

where spherical coordinates are used for p with the p=-axis parallel to the 
molecular axis. The atomic part Apato m is one-center part of p (p) subtracted by 
the hydrogen-atomic density OH(P) = 23~r-Z(P 2 + 1) -4, while the bond part Apbond 
is two-center part of p(p). We see that by definition of the Finkelstein-Horowitz 
wave function, the atomic part (9b) is spherical, whereas the bond part (9c) 
induces deformation of this symmetry. The radial density difference is then given 
by 

AI(p) = A/atom(p) + A/bond(p), (10a) 

A/atom(P) = (2s .-1)p2{[~.5(1 + S ) -1 ] (p2  + ~2)-4 _ (p2 + 1)-4}, (10b) 

A/bona(p) = +[251r-l(5(1 +S)-l]pZ(p2+(2)-4[(pR) -1 sin (pR)], (10c) 

and the directional density differences are given by 

A/II(pFI ) = (233-t ~r-~){[~'5(1 4- S)-~][1 4- cos (pllR)](p~ + ~.2)-3 _ (PI~ + 1)-3}, 
( l l a )  

• = ( 2 ~ 3 - ~ - ~ ) { [ f ( 1  + s ) - ~ ] ( p l  + f ) - ~  - (p~, + 1) -~} 

+ [3-1~r-~(SR3(1 4- S)-l](p~ +(2)-3/ZK3(R[p2 + (z]~/z), ( l l b )  

AIj,(p• = AIj_(p• 

where K~(z) means the modified Bessel function [18]. 
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Fig. 3. ls~rg state. Differences in the radial momentum density distributions. The A/, AL and A/~ 
govern AT, AE, and F, respectively. All values in atomic units 
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The modified density differences A f  and A/~ have been calculated numerically 
using the Newton-Cotes  and Filon's integration formulas [18]. Evaluation of AN 
and F has been carried out similarly. However,  the result for the force curve is 
not shown in the following analyses, since it is merely the gradient of the 
corresponding AE curve. 

4. Results and Discussion 

4.1. lso-g State 

In Fig. 2, the curves for AT, AE, and their components obtained from the 
momentum density are given. The total curves coincide with the results of the 
direct calculation. (The AE curve gives Re = 2.00 a.u. and De = 0.085 a.u..) Their  
density origins AI and A f  are shown in Fig. 3 together with A/~ which corres- 
ponds to the force F. 

In Fig. 3, the AI plots show contraction for R->4a .u . ,  and expansion for 
R - <2  a.u. (The expansion is also observed in Fig. 1.) These reorganizations 
respectively correspond to the decrease and increase in AT (Fig. 2). In accord 
with the guiding rule, the attractive nature of the lso-g state is reflected in this AI 
behaviour of initial contraction and final expansion. The critical point of the 
contract ion/expansion of AI is calculated to be Rc = 2.7 a.u. where AT vanishes. 

The density difference A f  in Fig. 3 shows contraction of the momentum density 
for R -> 2 a.u.. This is consistent with the fact that AE is negative (more stable 
than the isolated atoms) in this R-range  (Fig. 2). We see that the degree of 
contraction increases as R lowers, corresponding to the decrease in AE. As shown 
in the A f  plot for R = 2 a.u., this contraction is a result of migration of atomic 
density with higher momentum into bond density with lower momentum (dashed 
lines). This is a direct reflection of the ordinary concept of density accumulation 
in the bond region. However,  at R = 1 a.u., a small but nonnegligible density 
increase appears for p > 1.4 a.u. This expansion of momentum density seems 
responsible for positive AE at this separation, since the expansion may cancel the 
contraction in the range of 0 < p < 1.4 a.u. due to the weighting factor (kinetic 
operator)  p2/2. 

For R-> 4 a.u., A/~ shows contraction corresponding to the attraction in F. At  
R = Re, the guiding principle [1] suggests that AI must show a critical feature of 
contraction and expansion since F vanishes at this point. However,  the character 
of contraction is dominant even at Re = 2 a.u. and the critical nature of the 
reoganization A/~ is not clear. (Finer analysis shows a small expansion for 
p > 2 . 1  a.u., which just balances the contraction.) For R = 1 a.u., expansion is 
observed for p > 1.1 a.u. and this is the origin of repulsion at R < Re. 

The a tom-bond partitioning in Fig. 2 shows a predominant  contribution of the 
atomic part in both A T and AE. Regional a tom-bond  analysis in coordinate space 
[11] also gave the same trend. This seems to be a result of density flow from the 
atomic to the bond part. (Integration of the partit ioned densities assigns the 
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electronic charges of 1 / ( 1 + S )  and S/(I+S) to the atomic and bond parts, 
respectively.) The decrease in the atomic density may cause a decrease of the 
kinetic pressure in this portion, which contributes to lower the kinetic energy and 
then the total energy. (On the relation between the kinetic and total energies, see 
Ref. 1.) However ,  for R = Re, Fig. 2 shows that the atomic part  is still decreasing 
with decreasing R, and it is the increase in the bond part  that causes the AE 
curve to turn up for R < Re. Thus the atomic part  is dominant  in the initiation 
and acceleration of bond formation while the bond part  is important  in the 
termination of the process or the determination of Re as well as the atomic part.  

In this relation, it may be interesting to note that Pearson [19] recently reported 
a possibility of covalent bonding from the classical density. He  suggested that the 
major  part  of the stabilization accompanied with bond formation can be explained 
by the simple superposition of atomic densities. He  also showed that the dominant  
origin of this stabilization is the lowering of the kinetic energy. 

Also plotted in Fig. 2 is the directional partitioning of AT and AE into the parallel 
(Jl) and perpendicular  (_L) components.  Of the two components,  the II part  is shown 
to be dominant  and to contribute to the stabilization of the system until very small 
R. As shown in Fig. 4a, this is a result of contraction of momen tum density in 
this direction, which corresponds to the coordinate-space concept of decrease in 
the kinetic pressure due to the extension of the space of electronic motion from 
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atoms to molecule. The significance of this component  is in agreement with the 
results of Feinberg and Ruedenberg [11] and of Hoare  and Linnett [20] that the 
parallel component  of the kinetic energy is most critical for bonding. The 
contribution of the • component  is initially stabilizing but changes into destabiliz- 
ation for R < 2.1 a.u.. Corresponding contraction and expansion are seen in the 
AI .  plots (Fig. 4a). The increase in the orbital exponent  seems mainly responsible 
for the expansion. Similar to the role of the bond part in the a tom-bond 
partitioning, the • component  is an essential origin of the termination of reaction 
in the directional partitioning. This point recalls us a defect of the one- 
dimensional box model of diatomic molecules which contains only the [[ com- 
ponent.  The model gives the energy E ,  = nE'rr2/2R 2 (n denotes the quantum 
number and R the box length) and does not show any minimum in energy 
against R. 

4.2. 2po'. State 

In Fig. 5, the results for AT and AE obtained from the momentum density are 
plotted together with their a tom-bond  and parallel-perpendicular decomposi- 
tions. 

All the density origins AL A~ and A/~ given in Fig. 6 show the increasing 
expansions with decreasing R, which are responsible for the monotonous increase 
in AT, AE, and F. These expansion results from the migration of the low- 
momentum bond density to the high-momentum atomic density (see the dashed 
lines for R -- 2 a.u. in Fig. 6). The amounts of the atomic and bond charges are 
respectively 1/(1 - S) and - S / ( 1  - S) in this state. 

As a result, the atomic part is the predominant  origin of the destabilization 
(Fig. 5). The bond component  is slightly destabilizing for R > 3 a.u. but becomes 
stabilizing for smaller separations. The latter contribution of the bond part may 
be attributed mainly to the decrease in bond charge which would be effective to 
lower the kinetic pressure. The amount  of electrons in the parti t ioned densities 



Diatomic Interactions in Momentum Space 433 

I ",~) I I  "T(o) I I  ~T~o) I 

R=8 ~r A A o d ---~, r,.,,~ .2 r ,i_2, ~176176 v ,, ~ 

R=4 

R=2 

,4 

,2 

0 

-,2 

-,4 

-,6 

-,8 

-,2 
- ~  

-,6 
- , 8  

-1,0 
-1.2 "I 
-1,4 "I 

! 

-1,6-I 

l 
i l 

l 

plou 

~ ,2 2 
! ~  1 plau 

ATOM LI I f I ATOM I ~ l I\AT~ 

,q  I I 

,2 I 

' ['V I 
l t 

Fig. 6. 2po-. state. See the captions of Fig. 3 



434 T. Koga and M. Morita 

seems to be an important  factor as in the ground lso-g state. It is surprising for us 
that the amount  of electronic charge plays a different role in the two spaces; e.g. 
a decrease of the bond density in the coordinate space contributes to destabilize 
the system, whereas a decrease of the bond density in the m o m e n t u m  space 
contributes to stabilize the system. 

In the directional partitioning, both the II and _1_ components  cooperatively work 
to destabilize the system. The corresponding expansions are found in the density 
differences A/II and AI• depicted in Fig. 4b. The presence of a nodal plane Pz = 0 
works to transfer m o m e n t u m  density f rom the low m o m e n t u m  region around the 
origin to the high m o m e n t u m  region (see Fig. 1). This induces the expansion in 
both the I] and _1_ directions. 

The results discussed above for the lstrg and 2po-, states suggest that the atomic 
and parallel parts are of pr imary importance for the initial and intermediate 
stages. They seem to characterize the process of interaction in m o m e n t u m  space. 
However ,  the bond and perpendicular  components  aswel l  play a significant role 
in the final stage. The equilibrium distance results f rom the balance of the two 
opposing contributions of the atomic and bond par ts ,  or of the parallel and 
perpendicular  parts. 

Summary 

The recently proposed method of m o m e n t u m  density has been applied to the 
simple but actual system of H~ using the Finkels tein-Horowitz  wave function. 
The  results for the bonding lso'~ and antibonding 2po'~ states show the validity of 
the guiding rule of contraction and expansion for the behaviour  of momen tum 
density. Stabilization (attraction) and destabilization (repulsion) of the system 
have been interpreted based on the reorganization of the m o m e n t u m  density. 
Two partitionings of the stabilization energy have been carried out for the process 
of interaction. In the a t o m - b o n d  partitioning, the atomic part  has been shown to 
be important  as the origin of bonding. A decrease in atomic density rather  than 
an increase in bond density is essential for the stabilization. In the directional 
partitioning, the parallel component  has been predominant  in accordance with 
the previous discussion in the coordinate space. 
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from the Ministry of Education of Japan. 
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